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1. Introduction

Facility layout problems (FLPs) determine the placement of
facilities in order to obtain an efficient arrangement based on some
given criteria. The common criterion considered in most of FLPs is
minimization of total material handling cost between facilities.
Material handling cost plays a very important and critical role
while calculating the costs of a manufacturing system. Tompkins
et al. (1996) showed that approximately 20–50% of the total cost
incurred by a manufacturing system comes from material han-
dling. Obviously, material handling cost of a manufacturing system
depends on its layout type and the way its material handling paths
are determined. Therefore, in order to reduce the material handling
cost, an efficient layout of facilities is necessary.

A classification of FLPs was given by Chae and Peters (2006) and
Niroomand and Vizvári (2013) where they mentioned that there
are two types of layout problems such as (i) general facility layout
problem and (ii) machine layout planning. General facility layout
problem locates some departments considering their general area
(mostly rectangular departments). Machine layout planning uses
the specific shape of machines or departments for designing their
related layout e.g. cell formation problem that determines the lay-
out of machines in a manufacturing cell (Javadi, Jolai, Slomp,
Rabbani, & Tavakkoli-Moghaddam, 2013). Schematically, FLPs are
classified in four well-known categories, namely, open-field, closed
loop, single row and ladder layout as are illustrated in Fig. 1. These
categories are distinguished by the shape of their material han-
dling path. Das (1993) and Rajasekharan, Peters, and Yang (1998)
(also Cong et al., 2012; Niroomand, Takacs, & Vizvari, 2011) dis-
cussed an open-field layout in details while Chae and Peters
(2006) and Tavakkoli-Moghaddam and Panahi (2007) as well as
Niroomand and Vizvári (2013) focused on closed loop layout prob-
lems. Single row layout problems were also discussed by many
other authors e.g. Kothari and Ghosh (2013), Ou-Yang and
Utamima (2013), Amaral (2009), Anjos, Kennings, and Vannelli
(2005) and Ficko, Brezocnik, and Balic (2004).

In open-field layout problems, unlimited space is considered to
locate the manufacturing cells on the ground. The most prominent
limitation of designing an open-field layout is non-overlapping
constraints of the model that forces the cells to lie on the ground
without any overlapping. Some other constraints are also needed
to determine the pick-up points of cells and to measure distances
between the cells. Das (1993) introduced one such mathematical
model and used a four-step heuristic method to solve it.
Rajasekharan et al. (1998) used genetic algorithm to propose a
new solution to Das’ model. Kim and Kim (2000) considered cells
with different input and output points (pick-up and drop-off
points) in open-field layout problems.

The literature of closed loop layout is not as rich as other types
of layout problems. Just three studies focused on arrangement
of cells on a physical closed loop as mentioned before.
Tavakkoli-Moghaddam and Panahi (2007) introduced a mathemat-
ical model to locate cells just outside of a closed loop. They used
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Fig. 1. Different patterns for arrangement of facilities on floor (Niroomand & Vizvári, 2013).
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Lingo software and some meta-heuristics to solve their model.
Chae and Peters (2006) benefited from Das’ model (open-field lay-
out model) and used simulated annealing method to arrange the
cells around a given closed loop of material handling path. They
located cells on both inside and outside of a closed loop. It should
be mentioned that no mathematical model for closed loop layout
introduced by Chae and Peters (2006). The most recent study on
closed loop layout was done by Niroomand and Vizvári (2013)
which introduced an exact mixed integer linear programming
(MILP) model that locates cells on both sides of a closed loop.
They used Xpress software to solve their model. While the studies
of Das (1993) and Rajasekharan et al. (1998) (open-field layout)
and Chae and Peters (2006) consider an approximation of distances
of cells (Manhattan (rectilinear) distance) in the obtained solution,
the model of Niroomand and Vizvári (2013) measures the exact
distances between cells. These distances will be explained in next
section explicitly.

FLPs tend to be of Nondeterministic Polynomial-time hard
(NP-hard) type problems (Garey & Johnson, 1979). In practice,
applying exact solution methods to NP-hard problems is time con-
suming (Ou-Yang & Utamima, 2013). Meaning that when the prob-
lem size increases, the problem cannot be solved optimally in a
polynomial run time (see Bénabès, Poirson, & Bennis, 2013). Such
difficulty motivates a researcher of FLP to focus on developing effi-
cient meta-heuristic algorithms. In most cases, these algorithms
solve FLPs in shorter running time in comparison with exact meth-
ods. Some well-known meta-heuristic and decision making algo-
rithms applied to FLPs are genetic algorithms, simulated
annealing, tabu search, ant colony, etc. (see Aiello, Enea, &
Galante, 2006; Brintup, Ramsden, & Tiwari, 2007;
Garcia-Hernandez et al., 2013; Hadi-Vencheh &
Mohamadghasemi, 2013; Islier, 1998; Kaveh, Majazi Dalfard, &
Amiri, 2013; McKendall & Shang, 2006; McKendall, Shang, &
Kuppusamy, 2006; Naderi & Azab, 2014; Pierreval, Caux, Paris, &
Viguier, 2003; Sahin, Ertogral, & Turkbey, 2010; Solimanpur, Vrat,
& Shankar, 2005; Wang, Hu, & Ku, 2005).

Recently, a new meta-heuristic algorithm named migrating
birds optimization (MBO) was proposed by Duman, Uysal, and
Alkaya (2012). They applied their algorithm to quadratic assign-
ment problems and proved its efficiency. This paper introduces a
modification of the MBO algorithm to the closed loop layout model
with exact distances which was recently introduced by Niroomand
and Vizvári (2013). Taguchi experimental design (Taguchi, 1986) is
used to find the best level of parameters of the introduced algo-
rithm. To show applicability of the proposed method the results
are compared with those of the MBO algorithm, simulated anneal-
ing (SA) algorithm (Kirkpatrick, Gelatt, & Vecchi, 1983; Niroomand
& Vizvári, 2014) as well as Xpress software in the design of closed
loop layout.

The rest of this paper is organized as follow. Section 2 discusses
differences between approximate open-field and closed loop lay-
outs and the exact closed loop layout. The MBO algorithm designed
for closed loop layout with exact distances is proposed in Section 3.
The proposed modified MBO algorithm is introduced in Section 4. A
detailed computational experiment is done in Section 5. The paper
ends with a conclusion in Section 6.

2. Problem statement: closed loop layout with exact distances

In this study the closed loop layout model which was explicitly
presented in Niroomand and Vizvári (2013) is tackled. The model
and its brief literature is conceptually presented in this section.

As aforementioned, Das (1993) introduced a general mathemat-
ical model for the open-field layout problem. In that model the
objective function is the sum of Manhattan distances of any pair
of cells weighted by the flow value between them. The
Manhattan distance of a pair of cells is calculated as sum of abso-
lute differences of Cartesian coordinates of their pick-up points as
shown by Fig. 2. As closed loop layout is a special case of open-field
layout, the concepts of Das’ model were used by Chae and Peters
(2006) to arrange cells around a rectangular closed loop material
handling path meta-heuristically. In both studies by Das (1993)
and Chae and Peters (2006), the approximation of material han-
dling cost was evaluated by the objective function of the model
because Manhattan distances may not be correct in some cases.
In the case of open-field layout the Manhattan distance of a pair
of cells is not exact if there is at least one cell laying between that
pair of cells (see Fig. 2). Neither in a closed loop formation, the
Manhattan distance of a pair of cells yield an exact distance when
the cells are placed on two opposite sides of a rectangular closed
loop as shown in Fig. 2.

Niroomand and Vizvári (2013) introduced a new MILP model
for closed loop layout problems. The model includes the basic
open-field model of Das (1993) and some additional constraints.



Fig. 2. Exact distance vs. Manhattan distance in closed loop and open-field layout.
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Another basic assumption of the model is that the pick-up point of
each cell is placed in the middle of one of its edges (Like cell a in
Fig. 2). The additional sets of constraints of the model of closed
loop layout with exact distances are as follow:

� A set of constraints to allow any manufacturing cell to lie inside
or outside of a closed loop.
� A set of constraints to force pick-up point of any cell to be

placed on only one edge of the closed loop.
� A set of constraints to describe the position of any pair of cells

(e.g. ‘‘cell a on upper side and cell b on lower side’’ in Fig. 2(b)).
� A set of constraints to measure the exact distance of any pair of

cells (Fig. 2 (b)).

Niroomand and Vizvári (2013), used Xpress to solve the bench-
mark problems that are given by Das (1993) and Chae and Peters
(2006). A sample arrangement of a sequence of cells that can be
an output of the model is shown in Fig. 3.

The next section of the paper applies a recently introduced
meta-heuristic algorithm and its modified version to solve the
model introduced by Niroomand and Vizvári (2013).
3. A new solution methodology for closed loop layout with
exact distances

The experiments of Niroomand and Vizvári (2013) using Xpress
show that the model of closed loop layout with exact distances is
an NP-hard model. Their results proved that when the size of the
problem increases, the model cannot be optimally solved in a
deterministic polynomial time. Therefore, in this section a
meta-heuristic algorithm is proposed to solve the model.

In the proposed meta-heuristic method any sequence of cells
locating around a predefined size of a closed loop forms a solution.
Hence, a first-fit principle is applied as a placement strategy to
Fig. 3. A sample solution of the model introduced by Niroomand and Vizvári (2013)
for 10 cells. Gray areas are dead spaces that con not be used for any other cell.
arrange a sequence of manufacturing cells (as a solution) around
a predefined size of closed loop. Afterwards, standard migrating
birds optimization (MBO) technique together with its modification
is used to improve the solution by generation of some neighboring
solutions. MBO algorithm is a new meta-heuristic method, pro-
posed by Duman et al. (2012), to solve combinatorial optimization
problems. In the next parts of this section, the proposed algorithm
will be explained in details.
3.1. First-fit principle as placement strategy of cells on a given size of
closed loop

The placement strategy applied in this part is a modification of
placement strategy that was used by Chae and Peters (2006). Some
changes were made in the procedure in order to decrease the cost
of the layout.

A given sequence of cells located on the sides of a closed loop
will be the output of this placement strategy. A closed loop mate-
rial handling path has four sides. The upper, right, below and left
sides of the closed loop are named side1, side 2, side 3 and side
4, respectively (see Fig. 4). To start locating the sequence of cells,
the first cell of the sequence is placed on the intersection of sides
1 and 4, making sure it remains outside side 4 in a way that its
pick-up point is placed exactly on the corner point. Then, any other
cell of the given sequence of cells may lay inside or outside of any
side of the closed loop. For any other cell of the sequence the order-
ing priorities are as follows: outside side 1, inside side 1, outside
side 2, inside side 2, outside side 3, inside side 3, outside side 4
and inside side 4. Clearly, for each cell the first priority (side) which
has enough free space for the length of the cell is selected then the
free space of that side is updated to be used for other cells of the
sequence.

An example of placement strategy for random sequence of cells,
e.g. ð1;2;3;4;5;6;7;8;9;10Þ on a given size of a closed loop is
shown in Fig. 5. The procedure starts with cell 1 which is placed
on the corner of sides 1 and 4 and outside of the given closed loop.
Fig. 4. Different sides of a closed loop.



Fig. 5. A solution obtained from first-fit principle for a given sequence of cells.
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Then, for cell 2 the first priority (outside of side 1) is selected
because its free space is greater than the length of cell 2. The other
cells are located based on their first fitted priority. For example, for
locating cell 6, the first and second priorities, i.e. outside and inside
of side 1, are not fitted because its required length is greater than
the free space available outside and inside side 1, as such the third
priority, i.e. outside side 3 is suitable to cell 6. Then, because it is
the first cell lying outside side 2, it is placed on the corner of sides
1 and 2. Using the same reasoning cell 7 is located outside side 2,
but since the length of cell 8 is equal to the free space available
inside side 1 (second priority), it is placed on side 1. The same also
happens for cells 9 and 10.

3.2. Natural migration of birds

Although a group of birds may migrate in different formations,
one of the most popular birds’ migrating formations is the V forma-
tion. In this formation of migrating birds, some parameters like
wing-tip spacing (WTS), wing span (b), angle of the V formation
(a), depth, and maximum width of the wing (w) are important to
form an effective V formation. A V formation is shown in Fig. 6.

In order to minimize the flying consumed energy by a group of
birds, the values of WTS and depth are useful parameters to con-
template. Although Lissaman and Shollenberger (1970) and
Badgerow and Hainsworth (1981) applied some experimental
studies to find the best value of WTS, Hummel and Beukenberg
(1989) stated that,

WTSopt ¼ �0:05b ð1Þ

where b shows the wing span of a bird.
Furthermore, as mentioned by Rayner (1979), the optimum

value for depth can be obtained using:
Fig. 6. V formation of
Depthopt ¼ 2w ð2Þ

where w shows maximum width of the wing of a bird.
In a flock of migrating birds, most of the energy is spent by the

leader which flies at the front of the flock, so it gets tired faster
than the others. Then, usually after some time the leader goes to
the end of the flock and one of its followers will be the new leader
of the flock. Further details regarding the migration of birds can be
found in Duman et al. (2012).

3.3. Migrating birds optimization method

Duman et al. (2012) applied the concepts of V formation of
migrating birds to develop a new meta-heuristic method called
migrating birds optimization (MBO) algorithm for solving quadra-
tic assignment problems (QAP).

The MBO algorithm was introduced based on the neighboring
search technique. Similar to birds of a V shape migration, some ini-
tial solutions (also called main solution) organize a V formation
including one leading solution and some followers. In the flock of
solutions a limited number of neighboring solutions for each main
solution are generated. The neighboring solutions of each main
solution are evaluated and if there are any improvements among
them, that main solution is replaced by the solution provided by
the most improved neighbor. Then, each main solution can further
try to be improved by the help of some neighbors of the solution in
its front. This means that each solution, will share some of its
unused neighbors (that were not the best neighbor of that solu-
tion) to the next (behind) main solution. Therefore, except the
leading solution, the other main solutions of the flock have chance
to be improved by one of the neighbors of the main solution in
front of them. The procedure is repeated a number of times (tours).
Then, the leading solution moves to the end of the flock and one of
its followers become the new leader. The same procedure is done
and repeated for the new flock. The algorithm continues until a
number of iteration is reached (total number of generated neigh-
boring solutions in the flock). Finally, the best solution of the flock
is introduced as the solution of the MBO algorithm.

The notations used in the MBO algorithm are as follows,

n: number of initial (main) solutions of the flock.
k: number of neighboring solutions generated for each initial
(main) solution.
x: number of neighboring solutions shared with the next
solution.
m: number of tours.
K: number of iterations (total number of generated neighbor
solutions).

The similarities between the parameters of the MBO algorithm
and real migration of birds in V formation based on the details of
migrating birds.
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the study provided in Duman et al. (2012) are summarized in
Table 1.

Unlike some other meta-heuristic methods e.g. simulated
annealing, the MBO algorithm starts with several solutions at the
same time. Hence more feasible solutions of the given problem
are covered. This also provides the algorithm with the chance to
evaluate more neighboring solutions in different directions at the
same time. Even if a solution cannot improve itself by its neigh-
bors, it has chance to be improved using the neighbors of other
solutions that may be obtained from a different direction of the
solution space of the problem.
Fig. 7. Neighbor solution of solution shown in Fig. 4 when cells 4 and 8 are
swapped.
3.4. Migrating birds optimization algorithm for closed loop layout

In the MBO algorithm for closed loop layout, any randomly gen-
erated sequence of cells placed around a closed loop with given
size forms a random solution. The above-mentioned first-fit princi-
ple is used as a placement strategy for the sequence of cells around
the given closed loop. Then the solution is evaluated by calculating
its cost based on the exact distances as discussed in Niroomand
and Vizvári (2013). Swapping procedure is used to generate the
neighbors of a main solution. In the sequence of cells of a main
solution two cells are selected randomly and the sequence of cells
for the neighbor solution is obtained by interchanging the place of
selected cells in the sequence. The size of closed loop for a solution
and its neighbor is the same. As was the case with the sequence of
the main solution, the neighbor’s sequence is placed around the
same closed loop and is evaluated in the same way. For example,
if in the solution given in Fig. 4, the cells 4 and 8 are randomly
selected, the neighbor sequence will be ð1;2;3;8;5;6;7;4;9;10Þ
and the related neighbor solution by applying the
above-mentioned placement strategy with the same closed loop
size is shown in Fig. 7. Because enough free space is not available
for the length of cells 4 and 9 outside and inside side 2, they are
placed outside side 3 which is the next priority as explained before.

The MBO algorithm for closed loop layout starts with an initial
size of closed loop such as v ¼ h (v is the vertical length and h is
the horizontal length of the closed loop). An acceptable estimation

for initial v and h is v ¼ h ¼
PN

i li

� �
=2, where li is the length of the

side of cell i that contains its pick-up point while N shows the
number of cells (size of the problem) that should be located around
the closed loop. In the initial size of the closed loop, the MBO pro-
cedure explained in Section 3.3 is performed; whereas the genera-
tion and evaluation of the solutions and the method to generate
their neighboring solutions are explained at the beginning of this
section. Afterwards the size of the closed loop is decreased by a
unit and the last flock of solutions obtained from the MBO proce-
dure of initial size of the closed loop is moved to the new size of
the closed loop and the MBO procedure is repeated again based
on the new size of closed loop. The algorithm continues its itera-
tions until the last feasible size of closed loop is reached (v f � hf ,
the size which is physically enough for locating the cells based
on the placement strategy e.g. v f ¼ hf ). In any of the considered
Table 1
Similarities of MBO algorithm and V shape natural migration of birds.

Parameter of the MBO
algorithm

Similar concept in real migration of birds in V
formation

n Birds
k The induced power required which is inversely

proportional to the speed
x WTS
m The number of wing flaps before a change in the

leading bird
sizes of the closed loop, the best solution is saved and finally the
best solution among all saved solutions is introduced as the best
solution found by the MBO algorithm.

The flowchart of the MBO algorithm for closed loop layout
based on the aforementioned explanations is shown in Fig. 8.

3.5. Modified migrating birds optimization (MMBO) method for closed
loop layout

In the MBO algorithm any main solution may be improved
using some unused neighbors in front of the main solution. In this
way some unused neighbors of any solution is replaced by the
neighbors of the main solution at its front.

As mentioned above, in the V shape migration of birds the value
of WTS lets any bird be covered by a part of the body of the bird in
front. This means that the impact of any bird gives benefit to the
bird behind it to spend less power. By exploiting this fact, the pro-
posed MMBO tries to improve the neighbors of each main solution
by impact of the neighbors of the other main solutions of the flock.
In fact the neighbors do not move between main solutions directly
but they are used to generate some new neighbors for other main
solutions.

In the proposed MMBO, any neighbor of each main solution
(one process prior to process A of MBO flowchart) is regenerated
by the same neighbor of the main solution in front or beside it
using crossover and mutation operators. Later the regenerated
neighbor is considered instead of the original one if it has a less
objective function value. After regeneration of all neighbors of
the flock, each main solution will be tried to be replaced by new
neighbor which has better cost, if such a neighbor exists.

Crossover and mutation operators are widely applied in genetic
algorithm (GA) based meta-heuristic methods. These operations
are performed on current solutions, named as ‘parents’, to generate
a new solution from them, called ‘offspring’. Two different types of
crossovers are used in this part of the paper to generate new neigh-
bors from an existing flock of solutions.

3.5.1. Type 1 crossover
In this type of crossover two parents are selected (a neighbor of

a main solution and the same neighbor of the main solution in
front of it) and by applying Partial Mapped Crossover (PMX) (see
Eiben & Smith, 2003; Garcia-Hernandez et al., 2013) a single off-
spring is generated. This method guarantees that no element is
repeated in the final offspring. Then with probability of a a muta-
tion operation is performed on the new neighbor obtained by PMX.
The PMX and mutation used in crossover type 1 is shown in Figs. 9
and 10. In the pseudo code of crossover type 1, n is the number of



Fig. 8. Flowchart of MBO algorithm for closed loop layout.

Fig. 9. Flowchart of crossover type 1.
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main solutions (birds) of the flock and k shows the number of
neighbors generated for each main solution. This procedure occurs
at process A of the MBO flowchart (instead of movement of neigh-
bors to the next solution).

3.5.2. Type 2 crossover
In a crossover of type 2, a procedure similar to the crossover of

type 1 is used. The difference is that two of the same neighbors
from two main solutions beside each other are selected as two
parents. The PMX and mutation operators result in two different
offsprings which may be used instead of their parents if their cost
is less. Fig. 10 shows the crossover of type 2 and its flowchart can
be seen in Fig. 11. The same happens at process A of the MBO
flowchart.

The schematic example of the above-mentioned crossover oper-
ations is shown in Fig. 12 (the mutation operator is not included in
the figure) where the flock includes three main solutions and each
main solution includes three neighbors. Each solution shows the
sequence of cells to be placed around a closed loop.

4. Computational experiments

The MMBO and MBO algorithms for closed loop layout was
coded in Matlab and was run on a computer with an Intel



Fig. 10. Crossover and mutation operators used for neighbor regeneration.
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Pentium 4 processor, 3.00 GHz processor and 2.00 GB RAM. In
order to compare the performance of these algorithms, the SA algo-
rithm (Chae & Peters, 2006) was also developed using Matlab. The
same benchmark problems from the literature of closed loop prob-
lem were used to carry out the experiments. This set of problems
consists of 8 problems of different sizes including 4, 6, 8, 10, 12,
14, 16 and 18-cell problems. In addition, three more benchmark
problems with size of 20, 25 and 30-cellwere generated uniformly
to perform more experiments.

The objective function value obtained by the MBO algorithm
has the same concept with the objective function value named
‘‘closed loop’’ in Niroomand and Vizvári (2013). This means that
the constant inter-cell transportation cost is not included in the
objective function value of the MBO algorithm. The reason is that
the assumption of the MBO algorithm and the closed loop layout
model of Niroomand and Vizvári (2013) locate the pick-up point
of each cell on one of its edges and the exact distance of any pair
of cells is calculated from their pick-up point.

Like other meta-heuristic methods, the performance of the MBO
method is also sensitive to the level of its parameters. A set of
experiments for selecting the level of parameters of MBO method
were performed by Duman et al. (2012) and the effect of each
parameter was explained therein. In this part of the paper first
30-cells problem from the set of benchmark problems is selected
for carrying out initial experiments to find the appropriate level
of each parameter of the MBO algorithm. Then the selected level
of each factor is applied for final experiments on all benchmark
problems.

4.1. Taguchi experimental design for parameter setting

Obviously, the behavior of parameters is important to obtain
better results in meta-heuristic algorithms. When the number of
parameters and their number of levels increase, it is difficult to
study the effect of all possible combination of parameter levels.
In this study the levels of independent factors of the MMBO,
MBO and SA algorithms are determined based on Table 2. The
remaining factors of the MMBO and MBO algorithms including x
(the number of neighboring solutions shared with the next solu-
tion) and K (number of iterations) are not considered as indepen-
dent parameters by the following relations, x ¼ k and K ¼ knm
meaning that in the MBO algorithm all neighbors of any solution
is moved to the next solution. In this way the number of regener-
ated neighbors in MMBO and the number of transferred neighbors
in MBO will be equal.

Full factorial designs are extensively applied to set the parame-
ter levels of meta-heuristic methods (Al-Aomar & Al-Okaily, 2006;
Kim, Kim, & Jang, 2003; Tsai, Ho, Liu, & Chou, 2007). These methods
help the experimenter in finding the best level of each parameter
by using a reduced number of experiments covering all predeter-
mined levels of parameters.

The Taguchi experimental design is a method introduced by
Taguchi as a robust method to set the level of parameters
(Taguchi, 1986). This method is widely applied to optimization
problems for setting the level of parameters (see Hsu, 2013;
Mahmoodi-Rad, Molla-Alizadeh-Zavardehi, Dehghan, Sanei, &
Niroomand, 2013; Molla-Alizadeh-Zavardehi, Hajiaghaei-Keshteli,
& Tavakkoli-Moghaddam, 2011; Naderi, Zandieh, Ghoshe Balagh,
& Roshanaei, 2009). Taguchi design method clusters the parame-
ters into two groups of controllable and uncontrollable parameters.
The level of controllable parameter is fixed during the process,
while the level of uncontrollable parameter changes during the
process. This method tries to minimize the impact of uncontrol-
lable parameters and to find the best level of effective controllable
parameters. In order to achieve this purpose the Taguchi method
uses orthogonal arrays to design the experiments that reduce the
number of total experiments to be run. Finally, the output of each
experiment is transformed to a signal-to-noise ratio (S=N ratio)
which calculates the amount of variation of the response parame-
ter. The objective of Taguchi method is to minimize the amount of
S=N ratio. As mentioned in Naderi et al. (2009) the S=N ratio of min-
imization type problems is obtained by:

S=N ¼ �10log10 ðobjective functionÞ2 ð3Þ

In order to find the appropriate orthogonal array for any problem,
the total degree of freedom of its parameters is needed. For the pro-
posed MMBO algorithm, there are four parameters of three levels,
so two degrees of freedom is considered for each level and param-
eter. The only parameter with two levels also needs one degree of
freedom. By considering one degree of freedom for the total mean
there will be totally ten degrees of freedom (4� 2þ 1þ 1 ¼ 10).
Therefore the appropriate orthogonal array for the MMBO algo-
rithm consists of at least 10 experiments. The orthogonal array con-
sidered for experiments of the MMBO algorithm is L18 (35). In this
array there are five parameters with three levels for each, but in our
case the fifth parameter has only two levels, therefore the rows
related to the third level of the fifth parameter are filled by its first
and second levels arbitrarily. The orthogonal array of Taguchi
design for the MMBO algorithm is shown in Table 3.

Similarly the degree of freedom of the MBO and SA algorithms is
calculated and their appropriate orthogonal arrays are designed
and shown in Table 4.

The benchmark problem with the highest size (the 30-cell prob-
lem) was selected to perform the experiments designed by the
Taguchi method. To obtain more reliable results, each experiment
was run three times and the average was used in the calculations.
The best level of parameters introduced by Taguchi method is
shown in Table 5. The effect of factors can be seen in Figs. 13



Fig. 11. Flowchart of crossover type 2.
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and 14 as well. These are best levels of parameters obtained for the
30-cell problem which is the largest benchmark problem.
Therefore these levels of parameters are also used in other bench-
mark problems as their sizes are smaller than 30-cell problem,
thus, these levels of parameters seem to be sufficient.

4.2. Final experiments on the benchmark problems

The above-obtained levels of parameters were applied to the
MMBO, MBO and SA algorithms of all benchmark problems of lit-
erature of the closed loop layout problem. For all algorithms the
same run time of 2000þ 0:5N3 milliseconds for each closed loop
size was considered (where, N is the number of cells of each bench-
mark). The constant value of 2000 ms is considered to give possi-
bility to the small size benchmarks to have at least two seconds
run time. Based on the size of the benchmark problems, the run
times varied from several minutes to one hour. Each problem
was run five times and the results are summarized in Table 6.

As can be seen in Table 6, all the meta-heuristic methods are
able to find the optimal solution of the 4-cell problem which are
proven by Xpress but their performance is not as good as Xpress
for the 6 and 8-cell problems. The results also indicate that the



Fig. 12. Representation of crossover operations on a given flock.

Table 2
Initial levels of parameters for proposed algorithms.

MMBO MBO SA

Parameter Levels Parameter Levels Parameter Levels

(A) Number of solutions (n) 21, 39, 51 (A) Number of solutions (n) 21, 39, 51 (A) Initial temperature 100, 200, 350
(B) Number of neighbors (k) 20, 30, 45 (B) Number of neighbors (k) 20, 30, 45 (B) Cooling ratio 0.8, 0.9, 0.99
(C) Number of tours (m) 1, 2, 3 (C) Number of tours (m) 1, 2, 3 (C) Number of replications 50, 130, 200
(D) Mutation probability 0.3, 0.65, 1
(E) Crossover type Type 1, Type 2
Possible number of combinations 34 � 2 ¼ 162 Possible number of combinations 33 ¼ 27 Possible number of combinations 33 ¼ 27

Table 3
Modified L18 orthogonal array of Taguchi design for MMBO algorithm.

Experiment Number
of
solutions

Number of
neighbors

Number
of tours

Mutation
probability

Crossover
type

1 21 20 1 0.3 Type 1
2 21 30 3 1 Type 1
3 21 45 2 1 Type 2
4 21 30 2 0.3 Type 1
5 21 45 1 0.65 Type 2
6 21 20 3 0.65 Type 2
7 39 30 2 0.65 Type 2
8 39 45 1 0.3 Type 2
9 39 20 3 0.3 Type 1
10 39 45 3 0.65 Type 1
11 39 20 2 1 Type 1
12 39 30 1 1 Type 2
13 51 45 3 1 Type 1
14 51 20 2 0.65 Type 2
15 51 30 1 0.65 Type 1
16 51 20 1 1 Type 2
17 51 30 3 0.3 Type 2
18 51 45 2 0.3 Type 1
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meta-heuristics showed better performance in the case of other
benchmark problems comparing to Xpress software’s results. In
the case of small size problems (4 to 14-cell problems) the output
of all meta-heuristics is approximately the same while both MBO
and MMBO methods give better results than the SA algorithm in
the case of problems with larger than 14-cell size except the
18-cell problem. It is seen that in all problems that have a cell size
larger than 14, the performance of the MMBO algorithm is better
than the MBO algorithm.
4.3. Number of explored solutions

In most of researches, meta-heuristic methods are compared
from the ‘‘running time’’ point of view. Another criterion that can
be used for comparing meta-heuristic methods is that of the ‘‘num-
ber of explored solutions’’ that is equivalent to the number of times
that the algorithm tries to make improvement in the objective
function value. Although running time is an important property
in any meta-heuristic method, it is strongly dependent on the
structure of the method. A meta-heuristic may have better perfor-
mance even if it is able find a better solution in a more limited
number of explored solutions.

In the MBO algorithm any neighbor, after being generated, is
used once more to improve another leading solution so one more
chance is given to any generated neighbor to become a leading
solution, hence, it is counted twice. Thus, the method for calcula-
tion of explored solutions of the MMBO and MBO algorithms are
the same. Actually for the case of the MBO algorithm the number
of explored solution is the number of times that the MBO algo-
rithm tries to make improvement in the objective function value.
Based on the final experiments on the benchmark problems, the
number of explored solutions in any size of the closed loop mate-
rial handling path is shown in Table 7. Also some characteristics of
the MMBO, MBO and SA algorithms are compared in Table 8. As the
table shows, both the MMBO and MBO algorithms start with a
multiple initial solution that considers more directions of solution
area comparing to the SA algorithm that uses a single initial solu-
tion. The multiple initial solution also causes multiple search direc-
tions that increases the probability of finding better solutions. On



Table 4
L9 orthogonal arrays of Taguchi design for MBO and SA algorithms.

Experiment MBO SA

Number of solutions Number of neighbors Number of tours Initial temperature Cooling ratio Number of replications

1 21 20 1 100 0.8 50
2 21 30 2 100 0.9 130
3 21 45 3 100 0.99 200
4 39 20 2 200 0.8 130
5 39 30 3 200 0.9 200
6 39 45 1 200 0.99 50
7 51 20 3 350 0.8 200
8 51 30 1 350 0.9 50
9 51 45 2 350 0.99 130

Table 5
Best level of parameters obtained by Taguchi method for MMBO, MBO and SA algorithms.

MMBO MBO SA

Parameter Level obtained
by Taguchi method

Parameter Level obtained by
Taguchi method

Parameter Level obtained
by Taguchi method

Number of solutions (n) 51 Number of solutions (n) 51 Initial temperature 350
Number of neighbors (k) 45 Number of neighbors (k) 45 Cooling ratio 0.9
Number of tours (m) 2 Number of Tours (m) 3 Number of replications 200
Mutation probability 0.3
Crossover type Type 2

Fig. 14. The effect of different levels of MBO and SA algorithms based on S=N ratio.

Fig. 13. The effect of different levels of MMBO algorithm based on S=N ratio.
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the other hand, the MMBO algorithm can be able to explore better
solutions than the MBO and SA algorithms as it combines two solu-
tions from different directions to construct a new neighbor that
depended on its objective function value may be considered as a
new search direction (main solution or even leader). Also the
MMBO algorithm has opportunity to perform better than the
MBO and SA methods as it uses two different neighborhood search
operators consecutively.

The CPU run time to explore the number of solutions mentioned
in Table 7 for the SA, MBO and MMBO algorithms for the largest
benchmark (30-cell problem) is about 12.45, 14.12 and 15.05 s,
respectively, which are approximately in the same range. The



Table 6
The final results obtained from proposed algorithms for closed loop layout problem.

Problem No. Size Xpress resulta Minimum obtained solution Average of runs

SA MBO MMBO SA MBO MMBO

1 4 547.5b 547.5 547.5 547.5 547.5 547.5 547.5
2 6 1601.5b 1659.0 1659.0 1659.0 1659.0 1659.0 1659.0
3 8 5943.5b 6354.0 6354.0 6354.0 6376.7 6354.0 6354.0
4 10 13,417.0 12747.0 12747.0 12747.0 12747.0 12747.0 12747.0
5 12 37,281.5 34333.0 34333.0 34333.0 34650.2 34333.0 34333.0
6 14 45,402.5 44407.0 44407.0 44407.0 44613.2 44407.0 44407.0
7 16 69,337.0 57903.0 57913.0 57675.0 58126.0 57980.4 57828.2
8 18 88,807.5 75933.0 75933.0 75933.0 76069.8 76101.0 76044.8
9 20 – 126820.0 126640.0 126530.0 127972.0 126726.0 126648.0
10 25 – 311250.0 307938.0 307152.0 313440.0 309320.2 308520.8
11 30 – 571190.0 569220.0 569020.0 576310.0 570406.0 570208.0

The best output among the algorithms for each problem in the categories of minimum solution and average of runs is bolded.
a Closed loop layout cost obtained by Xpress (Niroomand & Vizvári, 2013).
b Optimality was proved by Xpress.

Table 7
Number of generated solutions in each closed loop size by proposed algorithms.

Method Formula for number of explored solutions Number of explored
solutions

SA ½ðno:of temperaturesÞðno of replicationsÞ� 8200
MBO ½ðnkÞ þ ððn� 1ÞkÞ�m 13,635
MMBO ½ðnkÞ þ ððn� 1ÞkÞ�m 9090

Table 8
Comparison of some characteristics of MMBO, MBO and SA algorithms.

Characteristic Algorithm

MMBO MBO SA

Initial solution Multiple Multiple Single
Search directions Multiple Multiple Single
Neighbors

obtained from
Two different search
directions

Single search
direction

Single search
direction

Number of
operators

2 1 1
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differences may arise from the coding structure of the neighbor-
hood operators of the algorithms.
5. Discussion and concluding remarks

Based on the limitation of the floor and material handling path,
different layout patterns may be considered for FMSs. In the cases
that there is not enough space for straight line layout (single row),
open-field and closed loop layouts may be useful. The closed loop
layout pattern is even more useful where Automated Guided
Vehicles (AGVs) are used to move the material.

An exact MILP model of closed loop layout from the literature
was tackled in this study. The NP-hardness of the model is the
main limitation of previous study (Niroomand & Vizvári, 2013)
and this study which make the model difficult to give a good fea-
sible solution especially for the case of large size problems.

A recently introduced meta-heuristic algorithm (MBO) was
modified (MMBO) in this paper to solve the closed loop layout
model. The proposed MMBO algorithm uses some natural and log-
ical rules to solve the model. The algorithm mixes the logics of
geometry and human thinking to arrange the cells around a rectan-
gular closed loop without any overlap by use of logical functions in
computer programming. On the other hand, the natural behavior of
birds when migrating, is applied in a computer program to con-
struct the proposed algorithm.

To test the performance of the proposed MMBO algorithm, the
standard form of the MBO and SA algorithms were also simulated
and used in the computational experiments part. The results
obtained by Xpress solver from the literature also was used in
the comparisons. The computational experiments proved that in
the first eight benchmarks out of all eleven benchmarks of the
study (as the Xpress results from the literature is available only
for these eight benchmarks) all the meta-heuristic algorithms are
efficient in finding improved solutions as compared to Xpress sol-
ver in five out of the eight benchmark problems. For the remaining
three benchmarks of the first eight benchmarks, in only one case
the algorithms obtain the optimal solution of Xpress solver.
Finally, considering all eleven benchmarks, the proposed MMBO
algorithm has better performance in comparison to the MBO and
SA algorithms in most of the benchmarks, especially large size
benchmarks.

Nowadays, researchers try to combine standard form of two or
more meta-heuristic algorithms in order to construct a hybrid
meta-heuristic algorithm to obtain a better performance in prob-
lem solving. As a future study, MBO algorithm can be hybridized
by combining standard MBO and other meta-heuristics e.g. simu-
lated annealing, genetic algorithm, tabu search, etc. Modified ver-
sion of some other meta-heuristics which are common in
computational computer programming (e.g. artificial bee colony
algorithm, sheep flock heredity algorithm, etc.) also may be applied
on the exact closed loop layout model. On the other hand, heuristic
algorithms e.g. Bender’s decomposition, Lagrangian relaxation, etc.
which are bridges between artificial intelligence and exact opti-
mization methods may also be used to solve the exact closed loop
layout model.
Acknowledgements

The authors are indebted to the editors and the referees of the
journal for their helpful and constructive comments that improved
the quality of the paper.
References

Aiello, G., Enea, M., & Galante, G. (2006). A multi-objective approach to facility
layout problem by genetic search algorithm and Electre method. Robotics and
Computer-Integrated Manufacturing, 22, 447–455.

Al-Aomar, R., & Al-Okaily, A. (2006). A GA-based parameter design for single
machine turning process with high-volume production. Computers and
Industrial Engineering, 50, 317–337.

Amaral, A. (2009). A new lower bound for the single row facility layout problem.
Discrete Applied Mathematics, 157, 183–190.

Anjos, M. F., Kennings, A., & Vannelli, A. (2005). A semidefinite optimization
approach for the single-row layout problem with unequal dimensions. Discrete
Optimization, 2, 113–122.

Badgerow, J. P., & Hainsworth, F. R. (1981). Energy savings through formation flight?
A re-examination of the vee formation. Journal of Theoretical Biology, 93, 41–52.

http://refhub.elsevier.com/S0957-4174(15)00282-1/h0005
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0005
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0005
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0010
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0010
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0010
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0015
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0015
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0020
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0020
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0020
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0025
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0025


S. Niroomand et al. / Expert Systems with Applications 42 (2015) 6586–6597 6597
Bénabès, J., Poirson, E., & Bennis, F. (2013). Integrated and interactive method for
solving layout optimization problems. Expert Systems with Applications, 40,
5796–5803.

Brintup, A. M., Ramsden, J., & Tiwari, A. (2007). An interactive genetic algorithm-
based framework for handling qualitative criteria in design optimization.
Computers in Industry, 58, 279–291.

Chae, J., & Peters, B. A. (2006). A simulated annealing algorithm based on a closed
loop layout for facility layout design in flexible manufacturing systems.
International Journal of Production Research, 44, 2561–2572.

Cong, X. C., Yang, S. L., Cao, S. Q., Chen, Z. L., Dai, M. X., & Peng, S. T. (2012). Effect of
aggregate stockpile configuration and layout on dust emissions in an open yard.
Applied Mathematical Modelling, 36(11), 5482–5491.

Das, S. K. (1993). A facility layout method for flexible manufacturing systems.
International Journal of Production Research, 31(2), 279–297.

Duman, A., Uysal, M., & Alkaya, A. F. (2012). Migrating birds optimization: A new
meta-heuristic approach and its performance on quadratic assignment
problem. Information Sciences, 217, 65–77.

Eiben, A., & Smith, J. (2003). Introduction to evolutionary computing. Springer-Verlag.
Ficko, M., Brezocnik, M., & Balic, J. (2004). Designing the layout of single- and

multiple-rows flexible manufacturing system by genetic algorithms. Journal of
Material Processing Technology, 150–158.

Garcia-Hernandeza, L., Pierrevalb, H., Salas-Moreraa, L., & Arauzo-Azofraa, A. (2013).
Handling qualitative aspects in unequal area facility layout problem: An
interactive genetic algorithm. Applied Soft Computing, 13, 1718–1727.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the
theory of NP-completeness. New York: WH Freeman.

Hadi-Vencheh, A., & Mohamadghasemi, A. (2013). An integrated AHP–NLP
methodology for facility layout design. Journal of Manufacturing Systems,
32(1), 40–45.

Hsu, C. (2013). Application of SVR, Taguchi loss function, and the artificial bee
colony algorithm to resolve multiresponse parameter design problems: A case
study on optimizing the design of a TIR lens. Neural Computing and Applications.
http://dx.doi.org/10.1007/s00521-013-1357-3.

Hummel, D., & Beukenberg, M. (1989). Aerodynamsiche Interferenseffekte beim
formationsflug von vögeln. Journal of Ornithology, 130, 15–24.

Islier, A. A. (1998). A genetic algorithm approach for multiple criteria facility
layout design. International Journal of Production Research, 36(6), 1549–
1569.

Javadi, B., Jolai, F., Slomp, J., Rabbani, M., & Tavakkoli-Moghaddam, R. (2013). An
integrated approach for the cell formation and layout design in cellular
manufacturing systems. International Journal of Production Research. http://
dx.doi.org/10.1080/00207543.2013.791755.

Kaveh, M., Majazi Dalfard, V., & Amiri, S. (2013). A new intelligent algorithm for
dynamic facility layout problem in state of fuzzy constraints. Neural Computing
and Applications. http://dx.doi.org/10.1007/s00521-013-1339-5.

Kim, J.-G., & Kim, Y.-D. (2000). Layout planning for facilities with fixed shapes and
input and output points. International Journal of Production Research, 38,
4635–4653.

Kim, S. J., Kim, K. S., & Jang, H. (2003). Optimization of manufacturing parameters for
a brake lining using Taguchi method. Journal of Material Processing Technology,
136, 202–208.

Kirkpatrick, S., Gelatt, C. D., Jr., & Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, 220, 671–680.

Kothari, R., & Ghosh, D. (2013). Tabu search for the single row facility layout
problem using exhaustive 2-opt and insertion neighborhoods. European Journal
of Operational Research, 224, 93–100.

Lissaman, P. B. S., & Shollenberger, C. A. (1970). Formation flight of birds. Science,
168, 1003–1005.
Mahmoodi-Rad, A., Molla-Alizadeh-Zavardehi, S., Dehghan, R., Sanei, M., &
Niroomand, S. (2013). Genetic and differential evolution algorithms for the
allocation of customers to potential distribution centers in a fuzzy environment.
International Journal Advanced Manufacturing Technology. http://dx.doi.org/
10.1007/s00170-013-5383-1.

McKendall, A. R., & Shang, J. (2006). Hybrid ant systems for the dynamic facility
layout problem. Computers & Operations Research, 33(3), 790–803.

McKendall, A. R., Shang, J., & Kuppusamy, S. (2006). Simulated annealing heuristics
for the dynamic facility layout problem. Computers & Operations Research, 33(8),
2431–2444.

Molla-Alizadeh-Zavardehi, S., Hajiaghaei-Keshteli, M., & Tavakkoli-Moghaddam, R.
(2011). Solving a capacitated fixed-charge transportation problem by artificial
immune and genetic algorithms with a Prüfer number representation. Expert
Systems with Applications, 38, 10462–10474.

Naderi, B., & Azab, A. (2014). Modeling and heuristics for scheduling of distributed
job shops. Expert Systems with Applications, 41(17), 7754–7763.

Naderi, B., Zandieh, M., Ghoshe Balagh, A. K., & Roshanaei, V. (2009). An improved
simulated annealing for hybrid flow shops with sequence-dependent setup and
transportation times to minimize total completion time and total tardiness.
Expert Systems with Applications, 36, 9625–9633.

Niroomand, S., Takacs, S., & Vizvari, B. (2011). To lay out or not to lay out? Annals of
Operations Research, 191, 183–193.

Niroomand, S., & Vizvári, B. (2013). A mixed integer linear programming
formulation of closed loop layout with exact distances. Journal of Industrial
and Production Engineering, 30(3), 190–201.

Niroomand, S., & Vizvári, B. (2014). Exact mathematical formulations and
metaheuristic algorithms for production cost minimization: A case study of
the cable industry. International Transactions in Operational Research. http://
dx.doi.org/10.1111/itor.12096.

Ou-Yang, C., & Utamima, A. (2013). Hybrid estimation of distribution algorithm for
solving single row facility layout problem. Computers & Industrial Engineering,
66(1), 95–103.

Pierreval, H., Caux, C., Paris, J. L., & Viguier, F. (2003). Evolutionary approaches to the
design and organization of manufacturing systems. Computers & Industrial
Engineering, 44(3), 339–364.

Rajasekharan, M., Peters, B. A., & Yang, T. (1998). A genetic algorithm for facility
layout design in flexible manufacturing systems. International Journal of
Production Research, 36, 95–110.

Rayner, J. M. V. (1979). A new approach to animal flight mechanics. Journal of
Experimental Biology, 80, 17–54.

Sahin, R., Ertogral, K., & Turkbey, O. (2010). A simulated annealing heuristic for the
dynamic layout problem with budget constraint. Computers & Industrial
Engineering, 59, 308–313.

Solimanpur, M., Vrat, P., & Shankar, R. (2005). An ant algorithm for the single row
layout problem in flexible manufacturing systems. Computers & Operations
Research, 32(3), 583–598.

Taguchi, G., (1986) Introduction to quality engineering. White Plains: Asian
Productivity Organization/UNIPUB.

Tavakkoli-Moghaddam, R., & Panahi, H., (2007) Solving anew mathematical model
of a closed-loop layout problem with unequal-sized facilities by a genetic
algorithm. In Proceedings of the 2007 IEEE IEEM (pp. 327–331). Singapore.

Tompkins, J. A., White, J. A., Bozer, Y. A., Frazelle, E. H., Tanchoco, J. M. A., & Trevino,
J. (1996). Facilities planning (2nd ed.). New York: Wiley.

Tsai, J. T., Ho, W. H., Liu, T. K., & Chou, J. H. (2007). Improved immune algorithm for
global numerical optimization and job shop scheduling problems. Applied
Mathematics and Computation, 194, 406–424.

Wang, M. J., Hu, M. H., & Ku, M. H. (2005). A solution to the unequal area facilities
layout problem by genetic algorithm. Computers in Industry, 56(2), 207–220.

http://refhub.elsevier.com/S0957-4174(15)00282-1/h0030
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0030
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0030
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0035
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0035
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0035
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0040
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0040
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0040
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0045
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0045
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0045
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0050
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0050
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0055
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0055
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0055
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0060
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0065
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0065
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0065
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0070
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0070
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0070
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0075
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0075
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0080
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0080
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0080
http://dx.doi.org/10.1007/s00521-013-1357-3
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0090
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0090
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0095
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0095
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0095
http://dx.doi.org/10.1080/00207543.2013.791755
http://dx.doi.org/10.1080/00207543.2013.791755
http://dx.doi.org/10.1007/s00521-013-1339-5
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0110
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0110
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0110
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0115
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0115
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0115
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0120
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0120
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0125
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0125
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0125
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0130
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0130
http://dx.doi.org/10.1007/s00170-013-5383-1
http://dx.doi.org/10.1007/s00170-013-5383-1
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0140
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0140
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0145
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0145
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0145
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0150
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0150
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0150
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0150
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0155
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0155
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0160
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0160
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0160
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0160
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0165
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0165
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0170
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0170
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0170
http://dx.doi.org/10.1111/itor.12096
http://dx.doi.org/10.1111/itor.12096
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0180
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0180
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0180
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0185
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0185
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0185
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0190
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0190
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0190
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0195
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0195
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0200
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0200
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0200
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0205
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0205
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0205
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0220
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0220
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0225
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0225
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0225
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0230
http://refhub.elsevier.com/S0957-4174(15)00282-1/h0230

	Modified migrating birds optimization algorithm for closed loop layout with exact distances in flexible manufacturing systems
	1 Introduction
	2 Problem statement: closed loop layout with exact distances
	3 A new solution methodology for closed loop layout with exact distances
	3.1 First-fit principle as placement strategy of cells on a given size of closed loop
	3.2 Natural migration of birds
	3.3 Migrating birds optimization method
	3.4 Migrating birds optimization algorithm for closed loop layout
	3.5 Modified migrating birds optimization (MMBO) method for closed loop layout
	3.5.1 Type 1 crossover
	3.5.2 Type 2 crossover


	4 Computational experiments
	4.1 Taguchi experimental design for parameter setting
	4.2 Final experiments on the benchmark problems
	4.3 Number of explored solutions

	5 Discussion and concluding remarks
	Acknowledgements
	References


